随机行走与最优化
2018年5月24日 19:55
通过分析元启发式算法的主要特点,我们知道随机化在探索和开发,或者多样化和集中化中都起着重要的作用。在大多数情况下,随机化是通过从均匀分布或高斯正态分布得到的简单随机数来实现的。在其他情况下,会使用更复杂的随机化技术,如:随机行走和 Lévy 飞行。本章简要回顾了随机行走的基本思想和理论、Lévy 飞行和马尔可夫链。我们还讨论初始化、步长、算法效率和鹰策略。这有助于我们了解自然启发式算法的工作机制。
通过分析元启发式算法的主要特点,我们知道随机化在探索和开发,或者多样化和集中化中都起着重要的作用。在大多数情况下,随机化是通过从均匀分布或高斯正态分布得到的简单随机数来实现的。在其他情况下,会使用更复杂的随机化技术,如:随机行走和 Lévy 飞行。本章简要回顾了随机行走的基本思想和理论、Lévy 飞行和马尔可夫链。我们还讨论初始化、步长、算法效率和鹰策略。这有助于我们了解自然启发式算法的工作机制。